Sex: Difference between revisions

From HBDWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:




'''Sex''' is the [[phenotypic trait|trait]] that determines whether a [[sexual reproduction|sexually reproducing]] [[organism]] produces [[male]] or [[female]] [[gamete]]s.<ref name="Stevenson">{{cite book| vauthors  = Stevenson A, Waite M |title=Concise Oxford English Dictionary: Book & CD-ROM Set|publisher=[[OUP Oxford]]|isbn=978-0-19-960110-3|year=2011|page=1302|access-date=March 23, 2018|url={{GBurl|id=4XycAQAAQBAJ|p=1320}}|quote=Sex: Either of the two main categories (male and female) into which humans and most other living things are divided on the basis of their reproductive functions. The fact of belonging to one of these categories. The group of all members of either sex.}}</ref><ref>{{cite book |last1=Mills |first1=Alex |title=Biology of Sex |date=1 January 2018 |publisher=University of Toronto Press |isbn=978-1-4875-9337-7 |pages=43–45 |url=https://books.google.com/books?id=bLhcDwAAQBAJ&pg=PA43 |access-date=3 October 2023 |language=en}}</ref><ref name="Purves"/> During sexual reproduction, a male and a female gamete fuse to form a [[zygote]], which develops into an [[offspring]] that inherits traits from each parent.  By convention, organisms that produce smaller, more mobile gametes ([[spermatozoa]], [[sperm]]) are called ''male'', while organisms that produce produce larger, non-mobile gametes ([[ovum|ova]], often called egg cells) are called ''female''.<ref name="Royle-2012">{{Cite book| vauthors = Royle NJ, Smiseth PT, Kölliker M |url={{GBurl|id=K-EUDAAAQBAJ|q=Sex+differences+in+parental+care|pg=PR5}}|title=The Evolution of Parental Care|date=2012|publisher=Oxford University Press|isbn=978-0-19-969257-6| veditors = Kokko H, Jennions M |editor-link1 = Hanna Kokko|pages=103|language=en|quote=The answer is that there is an agreement by convention: individuals producing the smaller of the two gamete types{{snd}}sperm or pollen{{snd}}are males, and those producing larger gametes{{snd}}eggs or ovules{{snd}}are females.}}</ref> An organism, such as most [[flowering plant]]s, that produces both types of gamete is a [[hermaphrodite]].<ref name="Purves">{{cite book|url={{GBurl|id=kS-h84pMJw4C|p=736}}|title=Life: The Science of Biology|vauthors=Purves WK, Sadava DE, [[Gordon Orians|Orians GH]], Heller HC|publisher=[[Macmillan Publishers|Macmillan]]|year=2000|isbn=978-0-7167-3873-2|page=736|quote=A single body can function as both male and female. Sexual reproduction requires both male and female haploid gametes. In most species, these gametes are produced by individuals that are either male or female. Species that have male and female members are called dioecious (from the Greek for 'two houses'). In some species, a single individual may possess both female and male reproductive systems. Such species are called monoecious ("one house") or hermaphroditic.|access-date=March 23, 2018}}</ref><ref name="Avise-2011">{{Cite book|url={{GBurl|id=jqiR8C0lEckC|q=Hermaphrodite}}|title=Hermaphroditism: A Primer on the Biology, Ecology, and Evolution of Dual Sexuality|vauthors=Avise JC|date=2011|publisher=Columbia University Press|isbn=978-0-231-52715-6|pages=1–7|language=en|author-link=John Avise|access-date=18 September 2020}}</ref>   
'''Sex''' is the [[phenotypic trait|trait]] that determines whether a [[sexual reproduction|sexually reproducing]] [[organism]] produces [[male]] or [[female]] [[gamete]]s.<ref name="Stevenson">Stevenson A, Waite M (2011). Concise Oxford English Dictionary: Book & CD-ROM Set. OUP Oxford. p. 1302. <nowiki>ISBN 978-0-19-960110-3</nowiki>. Retrieved 23 March 2018. Sex: Either of the two main categories (male and female) into which humans and most other living things are divided on the basis of their reproductive functions. The fact of belonging to one of these categories. The group of all members of either sex.</ref><ref>Mills, Alex (1 January 2018). Biology of Sex. University of Toronto Press. pp. 43–45. <nowiki>ISBN 978-1-4875-9337-7</nowiki>. Retrieved 3 October 2023.</ref><ref name="Purves"/> During sexual reproduction, a male and a female gamete fuse to form a [[zygote]], which develops into an [[offspring]] that inherits traits from each parent.  By convention, organisms that produce smaller, more mobile gametes ([[spermatozoa]], [[sperm]]) are called ''male'', while organisms that produce produce larger, non-mobile gametes ([[ovum|ova]], often called egg cells) are called ''female''.<ref name="Royle-2012">{{Cite book| vauthors = Royle NJ, Smiseth PT, Kölliker M |url={{GBurl|id=K-EUDAAAQBAJ|q=Sex+differences+in+parental+care|pg=PR5}}|title=The Evolution of Parental Care|date=2012|publisher=Oxford University Press|isbn=978-0-19-969257-6| veditors = Kokko H, Jennions M |editor-link1 = Hanna Kokko|pages=103|language=en|quote=The answer is that there is an agreement by convention: individuals producing the smaller of the two gamete types{{snd}}sperm or pollen{{snd}}are males, and those producing larger gametes{{snd}}eggs or ovules{{snd}}are females.}}</ref> An organism, such as most [[flowering plant]]s, that produces both types of gamete is a [[hermaphrodite]].<ref name="Purves">Purves WK, Sadava DE, Orians GH, Heller HC (2000). Life: The Science of Biology. Macmillan. p. 736. <nowiki>ISBN 978-0-7167-3873-2</nowiki>. Retrieved 23 March 2018. A single body can function as both male and female. Sexual reproduction requires both male and female haploid gametes. In most species, these gametes are produced by individuals that are either male or female. Species that have male and female members are called dioecious (from the Greek for 'two houses'). In some species, a single individual may possess both female and male reproductive systems. Such species are called monoecious ("one house") or hermaphroditic.</ref><ref name="Avise-2011">{{Cite book|url={{GBurl|id=jqiR8C0lEckC|q=Hermaphrodite}}|title=Hermaphroditism: A Primer on the Biology, Ecology, and Evolution of Dual Sexuality|vauthors=Avise JC|date=2011|publisher=Columbia University Press|isbn=978-0-231-52715-6|pages=1–7|language=en|author-link=John Avise|access-date=18 September 2020}}</ref>   


The male and female of a species may be physically alike (sexual monomorphism) or have physical differences ([[sexual dimorphism]]) that reflect various reproductive pressures on each sex. [[Sexual selection]] or [[mate choice]] can accelerate the evolution of differences between the sexes.
The male and female of a species may be physically alike (sexual monomorphism) or have physical differences ([[sexual dimorphism]]) that reflect various reproductive pressures on each sex. [[Sexual selection]] or [[mate choice]] can accelerate the evolution of differences between the sexes.

Revision as of 19:27, 4 February 2024


Sex is the trait that determines whether a sexually reproducing organism produces male or female gametes.[1][2][3] During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent. By convention, organisms that produce smaller, more mobile gametes (spermatozoa, sperm) are called male, while organisms that produce produce larger, non-mobile gametes (ova, often called egg cells) are called female.[4] An organism, such as most flowering plants, that produces both types of gamete is a hermaphrodite.[3][5]

The male and female of a species may be physically alike (sexual monomorphism) or have physical differences (sexual dimorphism) that reflect various reproductive pressures on each sex. Sexual selection or mate choice can accelerate the evolution of differences between the sexes.

The terms 'male' and 'female' typically do not apply in sexually undifferentiated species in which the individuals are isomorphic (look the same) and the gametes are isogamous (indistinguishable in size and shape), such as the green alga Ulva lactuca. Some kinds of functional differences between individuals, such as in fungi,[6] may be referred to as mating types.[7]

There are several sex-determination systems. Most mammalian species have the XY sex-determination system, where the male usually carries an X and a Y chromosome (XY), and the female usually carries two X chromosomes (XX). Other chromosomal sex-determination systems in animals include the ZW system in birds, and the XO system in insects. Various environmental systems include temperature-dependent sex determination in reptiles and crustaceans.[8]

Sexual reproduction

Sexual reproduction, in which two individuals produce an offspring that possesses a selection of the genetic traits of each parent, is exclusive to eukaryotes. Genetic traits are encoded in the deoxyribonucleic acid (DNA) of chromosomes. The eukaryote cell has a set of paired homologous chromosomes, one from each parent, and this double-chromosome stage is called "diploid". During sexual reproduction, a diploid organism produces specialized haploid sex cells called gametes via meiosis,[9] each of which has a single set of chromosomes. Meiosis involves a stage of genetic recombination via chromosomal crossover, in which regions of DNA are exchanged between matched pairs of chromosomes, to form new chromosomes, each with a new combination of the genes of the parents. Then the chromosomes are separated into single sets in the gametes. Each gamete in the offspring thus has half of the genetic material of the mother and half of the father.[10] The combination of chromosomal crossover and fertilization, bringing the two single sets of chromosomes together to make a new diploid zygote, results in a new organism that contains a different set of the genetic traits of each parent.

In animals, the haploid stage only occurs in the gametes, the haploid cells that are specialized to fuse to form a zygote that develops into a new diploid organism. In a plant species, the diploid organism produces a type of haploid spore by meiosis that is capable of undergoing repeated cell division to produce a multicellular haploid organism. In either case, the gametes may be externally similar (isogamy) as in the green alga Ulva or may be different in size and other aspects (anisogamy).[11] The size difference is greatest in oogamy, a type of anisogamy in which a small, motile gamete combines with a much larger, non-motile gamete.[12]

In anisogamic organisms, by convention, the larger gamete (called an ovum, or egg cell) is considered female, while the smaller gamete (called a spermatozoon, or sperm cell) is considered male. An individual that produces large gametes is female, and one that produces small gametes is male.[13] An individual that produces both types of gamete is a hermaphrodite. In some species, a hermaphrodite can self-fertilize and produce an offspring on its own.

Animals

Most sexually reproducing animals spend their lives as diploid, with the haploid stage reduced to single-cell gametes.[14] The gametes of animals have male and female forms—spermatozoa and egg cells, respectively. These gametes combine to form embryos which develop into new organisms.

The male gamete, a spermatozoon (produced in vertebrates within the testes), is a small cell containing a single long flagellum which propels it.[15] Spermatozoa are extremely reduced cells, lacking many cellular components that would be necessary for embryonic development. They are specialized for motility, seeking out an egg cell and fusing with it in a process called fertilization.

Female gametes are egg cells. In vertebrates, they are produced within the ovaries. They are large, immobile cells that contain the nutrients and cellular components necessary for a developing embryo.[16] Egg cells are often associated with other cells which support the development of the embryo, forming an egg. In mammals, the fertilized embryo instead develops within the female, receiving nutrition directly from its mother.

Animals are usually mobile and seek out a partner of the opposite sex for mating. Animals which live in the water can mate using external fertilization, where the eggs and sperm are released into and combine within the surrounding water.[17] Most animals that live outside of water, however, use internal fertilization, transferring sperm directly into the female to prevent the gametes from drying up.

In most birds, both excretion and reproduction are done through a single posterior opening, called the cloaca—male and female birds touch cloaca to transfer sperm, a process called "cloacal kissing".[18] In many other terrestrial animals, males use specialized sex organs to assist the transport of sperm—these male sex organs are called intromittent organs. In humans and other mammals, this male organ is known as the penis, which enters the female reproductive tract (called the vagina) to achieve insemination—a process called sexual intercourse. The penis contains a tube through which semen (a fluid containing sperm) travels. In female mammals, the vagina connects with the uterus, an organ which directly supports the development of a fertilized embryo within (a process called gestation).

Because of their motility, animal sexual behavior can involve coercive sex. Traumatic insemination, for example, is used by some insect species to inseminate females through a wound in the abdominal cavity—a process detrimental to the female's health.

Plants

Like animals, land plants have specialized male and female gametes.[19][20] In seed plants, male gametes are produced by reduced male gametophytes that are contained within pollen which have hard coats that protect the male gamete forming cells during transport from the anthers to the stigma. The female gametes of seed plants are contained within ovules. Once fertilized, these form seeds which, like eggs, contain the nutrients necessary for the initial development of the embryonic plant.

Template:Multiple image The flowers of flowering plants contain their sexual organs. Most flowering plants are hermaphroditic, with both male and female parts in the same flower or on the same plant in single sex flowers, about 5% of plant species have individual plants that are one sex or the other.[21] The female parts, in the center of a hermaphroditic or female flower, are the pistils, each unit consisting of a carpel, a style and a stigma. Two or more of these reproductive units may be merged to form a single compound pistil, the fused carpels forming an ovary. Within the carpels are ovules which develop into seeds after fertilization. The male parts of the flower are the stamens: these consist of long filaments arranged between the pistil and the petals that produce pollen in anthers at their tips. When a pollen grain lands upon the stigma on top of a carpel's style, it germinates to produce a pollen tube that grows down through the tissues of the style into the carpel, where it delivers male gamete nuclei to fertilize an ovule that eventually develops into a seed.

Some hermaphroditic plants are self-fertile, but plants have evolved multiple different self-incompatibility mechanisms to avoid self-fertilization, involving sequential hermaphroditism, molecular recognition systems and morphological mechanisms such as heterostyly.[22]Template:Rp

In pines and other conifers, the sex organs are produced within cones that have male and female forms. Male cones are smaller than female ones and produce pollen, which is transported by wind to land in female cones. The larger and longer-lived female cones are typically more durable, and contain ovules within them that develop into seeds after fertilization.

Because seed plants are immobile, they depend upon passive methods for transporting pollen grains to other plants. Many, including conifers and grasses, produce lightweight pollen which is carried by wind to neighboring plants. Some flowering plants have heavier, sticky pollen that is specialized for transportation by insects or larger animals such as hummingbirds and bats, which may be attracted to flowers containing rewards of nectar and pollen. These animals transport the pollen as they move to other flowers, which also contain female reproductive organs, resulting in pollination.

Fungi

File:Shiitake mushroom.jpg
Mushrooms

Most species of fungus can reproduce sexually and have life cycles with both haploid and diploid phases. These species of fungus are typically isogamous, i.e. lacking male and female specialization. One haploid fungus grows into contact with another, and then they fuse their cells. In some cases, the fusion is asymmetric, and the cell which donates only a nucleus (and no accompanying cellular material) could arguably be considered male.[23] Fungi may also have more complex allelic mating systems, with other sexes not accurately described as male, female, or hermaphroditic.[24]

Some fungi, including baker's yeast, have mating types that determine compatibility. Yeasts with the same mating types will not fuse with each other to form diploid cells, only with yeast carrying another mating type.[25]

Many species of higher fungi produce mushrooms as part of their sexual reproduction. Within the mushroom, diploid cells are formed, later dividing into haploid spores.

Sexual systems

A sexual system is a distribution of male and female functions across organisms in a species.[26]

Animals

Approximately 95% of animal species have separate male and female individuals, and are said to be gonochoric. About 5% of animal species are hermaphroditic.[26] This low percentage is partially attributable to the very large number of insect species, in which hermaphroditism is absent.[27] About 99% of vertebrates are gonochoric, and the remaining 1% that are hermaphroditic are almost all fishes.[28]

Plants

The majority of plants are bisexual,[29]Template:Rp either hermaphrodite (with both stamens and pistil in the same flower) or monoecious.[30][31] In dioecious species male and female sexes are on separate plants.[32] About 5% of flowering plants are dioecious, resulting from as many as 5000 independent origins.[33] Dioecy is common in gymnosperms, in which about 65% of species are dioecious, but most conifers are monoecious.[34]

Evolution of sex

It is generally accepted that isogamy was ancestral to anisogamy[35] and that anisogamy evolved several times independently in different groups of eukaryotes, including protists, algae, plants, and animals.[27] The evolution of anisogamy is synonymous with the origin of male and the origin of female.[36] It is also the first step towards sexual dimorphism[37] and influenced the evolution of various sex differences.[38]

However, the evolution of anisogamy has left no fossil evidence[39] and until 2006 there was no genetic evidence for the evolutionary link between sexes and mating types.[40] It is unclear whether anisogamy first led to the evolution of hermaphroditism or the evolution of gonochorism.[29]

But a 1.2 billion year old fossil from Bangiomorpha pubescens has provided the oldest fossil record for the differentiation of male and female reproductive types and shown that sexes evolved early in eukaryotes.[41]

The original form of sex was external fertilization. Internal fertilization, or sex as we know it, evolved later[42] and became dominant for vertebrates after their emergence on land.[43]

Sex-determination systems

The biological cause of an organism developing into one sex or the other is called sex determination. The cause may be genetic, environmental, haplodiploidy, or multiple factors.[27] Within animals and other organisms that have genetic sex-determination systems, the determining factor may be the presence of a sex chromosome. In plants that are sexually dimorphic, such as Ginkgo biloba,[22]Template:Rp the liverwort Marchantia polymorpha or the dioecious species in the flowering plant genus Silene, sex may also be determined by sex chromosomes.[44] Non-genetic systems may use environmental cues, such as the temperature during early development in crocodiles, to determine the sex of the offspring.[45]

Sex determination is often distinct from sex differentiation. Sex determination is the designation for the development stage towards either male or female while sex differentiation is the pathway towards the development of the phenotype.[46]

Genetic

XY sex determination

File:Drosophila XY sex-determination.svg

Humans and most other mammals have an XY sex-determination system: the Y chromosome carries factors responsible for triggering male development, making XY sex determination mostly based on the presence or absence of the Y chromosome. It is the male gamete that determines the sex of the offspring.[47] In this system XX mammals typically are female and XY typically are male.[27] However, individuals with XXY or XYY are males, while individuals with X and XXX are females.[8] Unusually, the platypus, a monotreme mammal, has ten sex chromosomes; females have ten X chromosomes, and males have five X chromosomes and five Y chromosomes. Platypus egg cells all have five X chromosomes, whereas sperm cells can either have five X chromosomes or five Y chromosomes.[48]

XY sex determination is found in other organisms, including insects like the common fruit fly,[49] and some plants.[50] In some cases, it is the number of X chromosomes that determines sex rather than the presence of a Y chromosome.[8] In the fruit fly individuals with XY are male and individuals with XX are female; however, individuals with XXY or XXX can also be female, and individuals with X can be males.[51]

ZW sex determination

In birds, which have a ZW sex-determination system, the W chromosome carries factors responsible for female development, and default development is male.[52] In this case, ZZ individuals are male and ZW are female. It is the female gamete that determines the sex of the offspring. This system is used by birds, some fish, and some crustaceans.[8]

The majority of butterflies and moths also have a ZW sex-determination system. Females can have Z, ZZW, and even ZZWW.[53]

XO sex determination

In the XO sex-determination system, males have one X chromosome (XO) while females have two (XX). All other chromosomes in these diploid organisms are paired, but organisms may inherit one or two X chromosomes. This system is found in most arachnids, insects such as silverfish (Apterygota), dragonflies (Paleoptera) and grasshoppers (Exopterygota), and some nematodes, crustaceans, and gastropods.[54][55]

In field crickets, for example, insects with a single X chromosome develop as male, while those with two develop as female.[56]

In the nematode Caenorhabditis elegans, most worms are self-fertilizing hermaphrodites with an XX karyotype, but occasional abnormalities in chromosome inheritance can give rise to individuals with only one X chromosome—these XO individuals are fertile males (and half their offspring are male).[57]

ZO sex determination

In the ZO sex-determination system, males have two Z chromosomes whereas females have one. This system is found in several species of moths.[58]


Sequential hermaphroditism

File:Ocellaris clownfish.JPG
Clownfishes are initially male; the largest fish in a group becomes female.

Some species can change sex over the course of their lifespan, a phenomenon called sequential hermaphroditism.[59] Teleost fishes are the only vertebrate lineage where sequential hermaphroditism occurs. In clownfish, smaller fish are male, and the dominant and largest fish in a group becomes female; when a dominant female is absent, then her partner changes sex.Template:Clarify In many wrasses the opposite is true—the fish are initially female and become male when they reach a certain size.[60] Sequential hermaphroditism also occurs in plants such as Arisaema triphyllum.

Temperature-dependent sex determination

Many reptiles, including all crocodiles and most turtles, have temperature-dependent sex determination. In these species, the temperature experienced by the embryos during their development determines their sex.[27] In some turtles, for example, males are produced at lower temperatures than females; but Macroclemys females are produced at temperatures lower than 22 °C or above 28 °C, while males are produced in between those temperatures.[61]

Haplodiploidy

Certain insects, such as honey bees and ants, use a haplodiploid sex-determination system.[62] Diploid bees and ants are generally female, and haploid individuals (which develop from unfertilized eggs) are male. This sex-determination system results in highly biased sex ratios, as the sex of offspring is determined by fertilization (arrhenotoky or pseudo-arrhenotoky resulting in males) rather than the assortment of chromosomes during meiosis.[63]

Sex differences

Anisogamy is the fundamental difference between male and female.[64][65] Richard Dawkins has stated that it is possible to interpret all the differences between the sexes as stemming from this.[66]

Sex differences in humans include a generally larger size and more body hair in men, while women have larger breasts, wider hips, and a higher body fat percentage. In other species, there may be differences in coloration or other features, and may be so pronounced that the different sexes may be mistaken for two entirely different taxa.[67]

Sexual dimorphism

File:Male and female pheasant.jpg
Common pheasants are sexually dimorphic in both size and appearance.
File:Beo-2.jpg
The common hill myna is sexually monomorphic, meaning that the external appearance of males and females is very similar.[68]

In many animals and some plants, individuals of male and female sex differ in size and appearance, a phenomenon called sexual dimorphism.[69] Sexual dimorphism in animals is often associated with sexual selection—the mating competition between individuals of one sex vis-à-vis the opposite sex.[67] In many cases, the male of a species is larger than the female. Mammal species with extreme sexual size dimorphism tend to have highly polygynous mating systems—presumably due to selection for success in competition with other males—such as the elephant seals. Other examples demonstrate that it is the preference of females that drives sexual dimorphism, such as in the case of the stalk-eyed fly.[70]

Females are the larger sex in a majority of animals.[69] For instance, female southern black widow spiders are typically twice as long as the males.[71] This size disparity may be associated with the cost of producing egg cells, which requires more nutrition than producing sperm: larger females are able to produce more eggs.[72][69]

Sexual dimorphism can be extreme, with males, such as some anglerfish, living parasitically on the female. Some plant species also exhibit dimorphism in which the females are significantly larger than the males, such as in the moss genus Dicranum[73] and the liverwort genus Sphaerocarpos.[74] There is some evidence that, in these genera, the dimorphism may be tied to a sex chromosome,[74][75] or to chemical signalling from females.[76]

In birds, males often have a more colorful appearance and may have features (like the long tail of male peacocks) that would seem to put them at a disadvantage (e.g. bright colors would seem to make a bird more visible to predators). One proposed explanation for this is the handicap principle.[77] This hypothesis argues that, by demonstrating he can survive with such handicaps, the male is advertising his genetic fitness to females—traits that will benefit daughters as well, who will not be encumbered with such handicaps.

Sex differences in behavior

The sexes across gonochoric species usually differ in behavior. In most animal species females invest more in parental care,[78] although in some species, such as some coucals, the males invest more parental care.[79] Females also tend to be more choosy for who they mate with,[80] such as most bird species.[81] Males tend to be more competitive for mating than females.[36]

  1. Stevenson A, Waite M (2011). Concise Oxford English Dictionary: Book & CD-ROM Set. OUP Oxford. p. 1302. ISBN 978-0-19-960110-3. Retrieved 23 March 2018. Sex: Either of the two main categories (male and female) into which humans and most other living things are divided on the basis of their reproductive functions. The fact of belonging to one of these categories. The group of all members of either sex.
  2. Mills, Alex (1 January 2018). Biology of Sex. University of Toronto Press. pp. 43–45. ISBN 978-1-4875-9337-7. Retrieved 3 October 2023.
  3. 3.0 3.1 Purves WK, Sadava DE, Orians GH, Heller HC (2000). Life: The Science of Biology. Macmillan. p. 736. ISBN 978-0-7167-3873-2. Retrieved 23 March 2018. A single body can function as both male and female. Sexual reproduction requires both male and female haploid gametes. In most species, these gametes are produced by individuals that are either male or female. Species that have male and female members are called dioecious (from the Greek for 'two houses'). In some species, a single individual may possess both female and male reproductive systems. Such species are called monoecious ("one house") or hermaphroditic.
  4. Template:Cite book
  5. Template:Cite book
  6. Template:Cite book
  7. Template:Cite encyclopedia
  8. 8.0 8.1 8.2 8.3 Template:Cite web
  9. Alberts et al. (2002), "V. 20. Meiosis", U.S. NIH, V. 20. Meiosis Template:Webarchive
  10. Alberts et al. (2002), U.S. National Institutes of Health, "V. 20. The Benefits of Sex Template:Webarchive".
  11. Gilbert (2000), "1.2. Multicellularity: Evolution of Differentiation". 1.2.Mul Template:Webarchive, NIH.
  12. Template:Cite book
  13. Template:Cite news
  14. Alberts et al. (2002), "3. Mendelian genetics in eukaryotic life cycles", U.S. NIH, 3. Mendelian/eukaryotic Template:Webarchive.
  15. Alberts et al. (2002), "V.20. Sperm", U.S. NIH, V.20. Sperm Template:Webarchive.
  16. Alberts et al. (2002), "V.20. Eggs", U.S. NIH, V.20. Eggs Template:Webarchive.
  17. Alberts et al. (2002), "V.20. Fertilization", U.S. NIH, V.20. Fertilization Template:Webarchive.
  18. Template:Cite web
  19. Template:Cite book
  20. Template:Cite book
  21. Template:Cite web
  22. 22.0 22.1 Template:Cite book
  23. Template:Cite book
  24. Template:Cite book
  25. Template:Cite book14.1. Cell-Type Specification and Mating-Type Conversion in Yeast Template:Webarchive
  26. 26.0 26.1 {{#if:Leonard |{{#if: |[[{{{authorlink}}}|{{#if: Leonard |Leonard{{#if: J. L. |, J. L. }} |{{{author}}} }}]] |{{#if:Leonard |Leonard{{#if: J. L. |, J. L. }} |{{{author}}} }} }} }}{{#if:Leonard |{{#if: | ; {{{coauthors}}} }} }}{{#if:2013-08-22 | (2013-08-22) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if:Leonard | . }}{{#if:Leonard2013-08-22 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Williams' Paradox and the Role of Phenotypic Plasticity in Sexual Systems] |Williams' Paradox and the Role of Phenotypic Plasticity in Sexual Systems }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Integrative and Comparative Biology |. Integrative and Comparative Biology }}{{#if:53 | 53 }}{{#if:4 | (4) }}{{#if:671–688 |: 671–688 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1093/icb/ict088 |. doi:10.1093/icb/ict088 }}{{#if:1540-7063 |. ISSN 1540-7063 }}{{#if:23970358 |. PMID 23970358 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  27. 27.0 27.1 27.2 27.3 27.4 {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:July 2014 | (July 2014) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:July 2014 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Sex determination: why so many ways of doing it?] |Sex determination: why so many ways of doing it? }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:PLOS Biology |. PLOS Biology }}{{#if:12 | 12 }}{{#if:7 | (7) }}{{#if:e1001899 |: e1001899 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1371/journal.pbio.1001899 |. doi:10.1371/journal.pbio.1001899 }}{{#if: |. ISSN {{{issn}}} }}{{#if:24983465 |. PMID 24983465 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  28. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2020-07-01 | (2020-07-01) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2020-07-01 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Hermaphroditism in fishes: an annotated list of species, phylogeny, and mating system] |Hermaphroditism in fishes: an annotated list of species, phylogeny, and mating system }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if:en | (in en) }}{{#if: | ({{{format}}}) }}{{#if:Ichthyological Research |. Ichthyological Research }}{{#if:67 | 67 }}{{#if:3 | (3) }}{{#if:341–360 |: 341–360 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1007/s10228-020-00754-6 |. doi:10.1007/s10228-020-00754-6 }}{{#if:1616-3915 |. ISSN 1616-3915 }}{{#if: |. PMID {{{pmid}}} }}{{#if:2020IchtR..67..341K |. Bibcode2020IchtR..67..341K }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  29. 29.0 29.1 Template:Cite book
  30. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:February 2016 | (February 2016) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:February 2016 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms] |Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:The New Phytologist |. The New Phytologist }}{{#if:209 | 209 }}{{#if:3 | (3) }}{{#if:1290–300 |: 1290–300 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1111/nph.13696 |. doi:10.1111/nph.13696 }}{{#if: |. ISSN {{{issn}}} }}{{#if:26467174 |. PMID 26467174 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  31. Template:Cite book
  32. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2021 | (2021) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2021 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} The Diversity and Dynamics of Sex Determination in Dioecious Plants] |The Diversity and Dynamics of Sex Determination in Dioecious Plants }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if:English | (in English) }}{{#if: | ({{{format}}}) }}{{#if:Frontiers in Plant Science |. Frontiers in Plant Science }}{{#if:11 | 11 }}{{#if: | ({{{issue}}}) }}{{#if: |: {{{pages}}} }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.3389/fpls.2020.580488 |. doi:10.3389/fpls.2020.580488 }}{{#if:1664-462X |. ISSN 1664-462X }}{{#if:33519840 |. PMID 33519840 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  33. {{#if:Renner |{{#if: |[[{{{authorlink}}}|{{#if: Renner |Renner{{#if: Susanne S. |, Susanne S. }} |{{{author}}} }}]] |{{#if:Renner |Renner{{#if: Susanne S. |, Susanne S. }} |{{{author}}} }} }} }}{{#if:Renner |{{#if: | ; {{{coauthors}}} }} }}{{#if:2014 | (2014) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if:Renner | . }}{{#if:Renner2014 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database] |The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:American Journal of Botany |. American Journal of Botany }}{{#if:101 | 101 }}{{#if:10 | (10) }}{{#if:1588–1596 |: 1588–1596 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.3732/ajb.1400196 |. doi:10.3732/ajb.1400196 }}{{#if: |. ISSN {{{issn}}} }}{{#if:25326608 |. PMID 25326608 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  34. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2018 | (2018) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2018 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if:http://eprints.keele.ac.uk/4961/1/29052018_1-s2.0-S1439179117304498-main.pdf |Sexual systems in gymnosperms: A review |Sexual systems in gymnosperms: A review }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Basic and Applied Ecology |. Basic and Applied Ecology }}{{#if:31 | 31 }}{{#if: | ({{{issue}}}) }}{{#if:1–9 |: 1–9 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1016/j.baae.2018.05.009 |. doi:10.1016/j.baae.2018.05.009 }}{{#if: |. ISSN {{{issn}}} }}{{#if: |. PMID {{{pmid}}} }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  35. Template:Cite book
  36. 36.0 36.1 {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:October 2016 | (October 2016) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:October 2016 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} What do isogamous organisms teach us about sex and the two sexes?] |What do isogamous organisms teach us about sex and the two sexes? }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences |. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences }}{{#if:371 | 371 }}{{#if:1706 | (1706) }}{{#if: |: {{{pages}}} }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1098/rstb.2015.0532 |. doi:10.1098/rstb.2015.0532 }}{{#if: |. ISSN {{{issn}}} }}{{#if:27619696 |. PMID 27619696 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  37. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2012-08-21 | (2012-08-21) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2012-08-21 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Evolutionary trajectories explain the diversified evolution of isogamy and anisogamy in marine green algae] |Evolutionary trajectories explain the diversified evolution of isogamy and anisogamy in marine green algae }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Proceedings of the National Academy of Sciences of the United States of America |. Proceedings of the National Academy of Sciences of the United States of America }}{{#if:109 | 109 }}{{#if:34 | (34) }}{{#if:13692–13697 |: 13692–13697 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1073/pnas.1203495109 |. doi:10.1073/pnas.1203495109 }}{{#if:0027-8424 |. ISSN 0027-8424 }}{{#if:22869736 |. PMID 22869736 }}{{#if:2012PNAS..10913692T |. Bibcode2012PNAS..10913692T }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  38. Template:Cite book
  39. Template:Cite book
  40. Template:Cite book
  41. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2020-08-15 | (2020-08-15) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2020-08-15 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Oxygen, life forms, and the evolution of sexes in multicellular eukaryotes] |Oxygen, life forms, and the evolution of sexes in multicellular eukaryotes }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if:en | (in en) }}{{#if: | ({{{format}}}) }}{{#if:Heredity |. Heredity }}{{#if:125 | 125 }}{{#if:1 | (1) }}{{#if:1–14 |: 1–14 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1038/s41437-020-0317-9 |. doi:10.1038/s41437-020-0317-9 }}{{#if:1365-2540 |. ISSN 1365-2540 }}{{#if:32415185 |. PMID 32415185 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  42. Template:Cite web
  43. Template:Cite web
  44. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2004 | (2004) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2004 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Sex-determining mechanisms in land plants] |Sex-determining mechanisms in land plants }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:The Plant Cell |. The Plant Cell }}{{#if:16 Suppl | 16 Suppl }}{{#if:Suppl | (Suppl) }}{{#if:S61–S71 |: S61–S71 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1105/tpc.016667 |. doi:10.1105/tpc.016667 }}{{#if: |. ISSN {{{issn}}} }}{{#if:15084718 |. PMID 15084718 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  45. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:January 2008 | (January 2008) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:January 2008 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} The adaptive significance of temperature-dependent sex determination in a reptile] |The adaptive significance of temperature-dependent sex determination in a reptile }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Nature |. Nature }}{{#if:451 | 451 }}{{#if:7178 | (7178) }}{{#if:566–568 |: 566–568 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1038/nature06519 |. doi:10.1038/nature06519 }}{{#if: |. ISSN {{{issn}}} }}{{#if:18204437 |. PMID 18204437 }}{{#if:2008Natur.451..566W |. Bibcode2008Natur.451..566W }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  46. Template:Cite book
  47. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:October 2008 | (October 2008) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:October 2008 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Sex determination in mammals – before and after the evolution of SRY] |Sex determination in mammals – before and after the evolution of SRY }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Cellular and Molecular Life Sciences |. Cellular and Molecular Life Sciences }}{{#if:65 | 65 }}{{#if:20 | (20) }}{{#if:3182–95 |: 3182–95 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1007/s00018-008-8109-z |. doi:10.1007/s00018-008-8109-z }}{{#if: |. ISSN {{{issn}}} }}{{#if:18581056 |. PMID 18581056 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  48. Template:Cite book
  49. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if: | ({{{date}}}) |{{#if:2010 |{{#if: | ({{{month}}} 2010) | (2010) }} }} }}{{#if: | . }}{{#if:2010 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Evolution of sex chromosomes in insects] |Evolution of sex chromosomes in insects }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Annual Review of Genetics |. Annual Review of Genetics }}{{#if:44 | 44 }}{{#if: | ({{{issue}}}) }}{{#if:91–112 |: 91–112 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1146/annurev-genet-102209-163600 |. doi:10.1146/annurev-genet-102209-163600 }}{{#if: |. ISSN {{{issn}}} }}{{#if:21047257 |. PMID 21047257 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  50. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:October 1993 | (October 1993) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:October 1993 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Sex determination in flowering plants] |Sex determination in flowering plants }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:The Plant Cell |. The Plant Cell }}{{#if:5 | 5 }}{{#if:10 | (10) }}{{#if:1241–1251 |: 1241–1251 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1105/tpc.5.10.1241 |. doi:10.1105/tpc.5.10.1241 }}{{#if: |. ISSN {{{issn}}} }}{{#if:8281039 |. PMID 8281039 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  51. Template:Cite book
  52. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:February 2003 | (February 2003) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:February 2003 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos] |DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Biology of Reproduction |. Biology of Reproduction }}{{#if:68 | 68 }}{{#if:2 | (2) }}{{#if:560–570 |: 560–570 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1095/biolreprod.102.007294 |. doi:10.1095/biolreprod.102.007294 }}{{#if: |. ISSN {{{issn}}} }}{{#if:12533420 |. PMID 12533420 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  53. Template:Cite book
  54. Template:Cite book
  55. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2003 | (2003) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2003 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Advances in chromosomal studies of gastropod molluscs.] |Advances in chromosomal studies of gastropod molluscs. }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Journal of Molluscan Studies |. Journal of Molluscan Studies }}{{#if:69 | 69 }}{{#if:3 | (3) }}{{#if:187–202 |: 187–202 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1093/mollus/69.3.187 |. doi:10.1093/mollus/69.3.187 }}{{#if: |. ISSN {{{issn}}} }}{{#if: |. PMID {{{pmid}}} }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  56. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if: | ({{{date}}}) |{{#if:2005 |{{#if: | ({{{month}}} 2005) | (2005) }} }} }}{{#if: | . }}{{#if:2005 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Karyotypes of two American field crickets: Gryllus rubens and Gryllus sp. (Orthoptera: Gryllidae)] |Karyotypes of two American field crickets: Gryllus rubens and Gryllus sp. (Orthoptera: Gryllidae) }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Entomological Science |. Entomological Science }}{{#if:8 | 8 }}{{#if:3 | (3) }}{{#if:219–222 |: 219–222 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1111/j.1479-8298.2005.00118.x |. doi:10.1111/j.1479-8298.2005.00118.x }}{{#if: |. ISSN {{{issn}}} }}{{#if: |. PMID {{{pmid}}} }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  57. Template:Cite book
  58. Template:Cite book
  59. Template:Cite book
  60. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2016 | (2016) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2016 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Bending Genders: The Biology of Natural Sex Change in Fish] |Bending Genders: The Biology of Natural Sex Change in Fish }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if:english | (in english) }}{{#if: | ({{{format}}}) }}{{#if:Sexual Development |. Sexual Development }}{{#if:10 | 10 }}{{#if:5–6 | (5–6) }}{{#if:223–2241 |: 223–2241 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1159/000449297 |. doi:10.1159/000449297 }}{{#if: |. ISSN {{{issn}}} }}{{#if:27820936 |. PMID 27820936 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  61. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2000 | (2000) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2000 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if:https://www.ncbi.nlm.nih.gov/books/NBK9989/ |Environmental Sex Determination |Environmental Sex Determination }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if:en | (in en) }}{{#if: | ({{{format}}}) }}{{#if:Developmental Biology. 6th Edition |. Developmental Biology. 6th Edition }}{{#if: | {{{volume}}} }}{{#if: | ({{{issue}}}) }}{{#if: |: {{{pages}}} }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if: |. doi:{{{doi}}} }}{{#if: |. ISSN {{{issn}}} }}{{#if: |. PMID {{{pmid}}} }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  62. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:August 2003 | (August 2003) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:August 2003 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Sex determination in the honeybee] |Sex determination in the honeybee }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Cell |. Cell }}{{#if:114 | 114 }}{{#if:4 | (4) }}{{#if:397–398 |: 397–398 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1016/S0092-8674(03)00610-X |. doi:10.1016/S0092-8674(03)00610-X }}{{#if: |. ISSN {{{issn}}} }}{{#if:12941267 |. PMID 12941267 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  63. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:June 2015 | (June 2015) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:June 2015 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if:https://www.pure.ed.ac.uk/ws/files/20137629/1_s2.0_S221457451500084X_main.pdf |Haplodiploidy and the reproductive ecology of Arthropods |Haplodiploidy and the reproductive ecology of Arthropods }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Current Opinion in Insect Science |. Current Opinion in Insect Science }}{{#if:9 | 9 }}{{#if: | ({{{issue}}}) }}{{#if:36–43 |: 36–43 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1016/j.cois.2015.04.018 |. doi:10.1016/j.cois.2015.04.018 }}{{#if: |. ISSN {{{issn}}} }}{{#if:32846706 |. PMID 32846706 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  64. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:June 2004 | (June 2004) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:June 2004 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Everything you always wanted to know about sexes] |Everything you always wanted to know about sexes }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:PLOS Biology |. PLOS Biology }}{{#if:2 | 2 }}{{#if:6 | (6) }}{{#if:e183 |: e183 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1371/journal.pbio.0020183 |. doi:10.1371/journal.pbio.0020183 }}{{#if: |. ISSN {{{issn}}} }}{{#if:15208728 |. PMID 15208728 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if:One thing biologists do agree on is that males and females count as different sexes. And they also agree that the main difference between the two is gamete size: males make lots of small gametes—sperm in animals, pollen in plants—and females produce a few big eggs. | “One thing biologists do agree on is that males and females count as different sexes. And they also agree that the main difference between the two is gamete size: males make lots of small gametes—sperm in animals, pollen in plants—and females produce a few big eggs.” }}
  65. Template:Cite book
  66. Template:Cite book
  67. 67.0 67.1 Template:Cite encyclopedia
  68. {{#if:Robin |{{#if: |[[{{{authorlink}}}|{{#if: Robin |Robin{{#if: V. V. |, V. V. }} |{{{author}}} }}]] |{{#if:Robin |Robin{{#if: V. V. |, V. V. }} |{{{author}}} }} }} }}{{#if:Robin |{{#if: | ; {{{coauthors}}} }} }}{{#if:2011 | (2011) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if:Robin | . }}{{#if:Robin2011 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if:https://www.jstor.org/stable/24078632 |Determining the sex of a monomorphic threatened, endemic passerine in the sky islands of southern India using molecular and morphometric methods |Determining the sex of a monomorphic threatened, endemic passerine in the sky islands of southern India using molecular and morphometric methods }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Current Science |. Current Science }}{{#if:101 | 101 }}{{#if:5 | (5) }}{{#if:676–679 |: 676–679 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if: |. doi:{{{doi}}} }}{{#if:0011-3891 |. ISSN 0011-3891 }}{{#if: |. PMID {{{pmid}}} }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if:Many species of birds are, however, monomorphic and difficult to sex visually, particularly in the field and some even in hand. Some examples are the Hill Mynah, Gracula religiosa and the Black-capped Chickadee, Parus atricapillus. | “Many species of birds are, however, monomorphic and difficult to sex visually, particularly in the field and some even in hand. Some examples are the Hill Mynah, Gracula religiosa and the Black-capped Chickadee, Parus atricapillus.” }}
  69. 69.0 69.1 69.2 Template:Cite book
  70. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:22 January 1994 | (22 January 1994) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:22 January 1994 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if:http://www.indiana.edu/~curtweb/L567/readings/Wilkinson_%26_Reillo_1994.pdf |Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly |Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Proceedings of the Royal Society B |. Proceedings of the Royal Society B }}{{#if:225 | 225 }}{{#if:1342 | (1342) }}{{#if:1–6 |: 1–6 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1098/rspb.1994.0001 |. doi:10.1098/rspb.1994.0001 }}{{#if: |. ISSN {{{issn}}} }}{{#if: |. PMID {{{pmid}}} }}{{#if:1994RSPSB.255....1W |. Bibcode1994RSPSB.255....1W }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  71. Template:Cite book
  72. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if: | ({{{date}}}) |{{#if:2007 |{{#if: | ({{{month}}} 2007) | (2007) }} }} }}{{#if: | . }}{{#if:2007 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Is fecundity the ultimate cause of female-biased size dimorphism in a dragon lizard?] |Is fecundity the ultimate cause of female-biased size dimorphism in a dragon lizard? }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Journal of Zoology |. Journal of Zoology }}{{#if:273 | 273 }}{{#if:3 | (3) }}{{#if:266–272 |: 266–272 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1111/j.1469-7998.2007.00324.x |. doi:10.1111/j.1469-7998.2007.00324.x }}{{#if: |. ISSN {{{issn}}} }}{{#if: |. PMID {{{pmid}}} }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  73. Template:Cite book
  74. 74.0 74.1 Template:Cite book
  75. Template:Cite book
  76. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if: | ({{{date}}}) |{{#if:1965 |{{#if: | ({{{month}}} 1965) | (1965) }} }} }}{{#if: | . }}{{#if:1965 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Experimental taxonomy of some British species of genus Dicranum] |Experimental taxonomy of some British species of genus Dicranum }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:New Phytologist |. New Phytologist }}{{#if:64 | 64 }}{{#if:3 | (3) }}{{#if:366–386 |: 366–386 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1111/j.1469-8137.1965.tb07546.x |. doi:10.1111/j.1469-8137.1965.tb07546.x }}{{#if: |. ISSN {{{issn}}} }}{{#if: |. PMID {{{pmid}}} }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  77. Template:Cite book
  78. Template:Cite book
  79. {{#if: |{{#if: |[[{{{authorlink}}}|{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }}]] |{{#if: |{{{last}}}{{#if: |, {{{first}}} }} |{{{author}}} }} }} }}{{#if: |{{#if: | ; {{{coauthors}}} }} }}{{#if:2019-08-28 | (2019-08-28) |{{#if: |{{#if: | ({{{month}}} {{{year}}}) | ({{{year}}}) }} }} }}{{#if: | . }}{{#if:2019-08-28 | }}{{#ifeq: | no | | {{#if: |“|"}} }}{{#if: |[{{{url}}} Sex roles and the evolution of parental care specialization] |Sex roles and the evolution of parental care specialization }}{{#ifeq: | no | | {{#if:|”|"}} }}{{#if: | (in {{{language}}}) }}{{#if: | ({{{format}}}) }}{{#if:Proceedings of the Royal Society B: Biological Sciences |. Proceedings of the Royal Society B: Biological Sciences }}{{#if:286 | 286 }}{{#if:1909 | (1909) }}{{#if:20191312 |: 20191312 }}{{#if: |. {{#if: |{{{location}}}: }}{{{publisher}}} }}{{#if:10.1098/rspb.2019.1312 |. doi:10.1098/rspb.2019.1312 }}{{#if: |. ISSN {{{issn}}} }}{{#if:31455191 |. PMID 31455191 }}{{#if: |. Bibcode{{{bibcode}}} }}{{#if: |. OCLC {{{oclc}}} }}{{#if: |. {{{id}}} }}{{#if: |. Retrieved on [[{{{accessdate}}}]]{{#if: | , [[{{{accessyear}}}]] }} }}{{#if: | Retrieved on {{{accessmonthday}}}, {{{accessyear}}} }}{{#if: | Retrieved on {{{accessdaymonth}}} {{{accessyear}}} }}{{#if: |. [{{{laysummary}}} Lay summary]{{#if: | – {{{laysource}}}}} }}{{#if: | ([[{{{laydate}}}]]) }}.{{#if: | “{{{quote}}}” }}
  80. Template:Cite web
  81. Template:Cite book